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1. Introduction

认识您们很高兴。我我我将将将要要要用用用英英英语语语演演演讲讲讲。。。

因为听众之中有不明白汉语的。
The Jones polynomial V (now commonly used with the convention of [J]) is a Laurent polyno-

mial in one variable t of oriented knots and links, and can be defined by being 1 on the unknot

and the (skein) relation

t−1V (L+) − t V (L−) = −(t−1/2− t1/2)V (L0) . (1)

Herein L±,0 are three links with diagrams differing only near a crossing.

L+ L− L0

(2)
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2 1 Introduction

When

VK =V0tk +V1tk+1 + . . .+Vdtk+d (3)

with V0 6= 0 6=Vd is the Jones polynomial of a knot or link K, we will use throughout the paper

the notation Vi = Vi(K) = Vi and V̄i = V̄i(K) = Vk−i for the the i-th or i-th last coefficient of V ,

and will write for d the span spanVK of V , for k the minimal degree mindegVK and for k+ d

the maximal degree maxdegVK .

For quite a while one is wondering what topological information the Jones polynomial contains,

and in connection with this, one posed the

Question 1 Does there exist a non-trivial knot with trivial Jones polynomial?

While the existence of non-trivial links with trivial polynomial is now settled for links of two

or more components by Eliahou-Kauffman-Thistlethwaite [EKT], the (most interesting) knot

case remains open. The question remains unanswered, though some classes of knots have been

excluded from having trivial Jones polynomial. These results are obtained in [Ka, Mu, Th2]

for alternating knots, [LT] for adequate knots, [St2] for positive knots, and also in [Th2] for the

Kauffman polynomial of semiadequate knots. Except for these (meanwhile classical) results,

and despite considerable (including electronic) efforts [Bi, Ro, DH, St5], even nicely defined

general classes of knots on which one can exclude trivial polynomial are scarce. (I came across

some work of Yamada who stated that he verified all knots up to 21 or 22 crossings, but I have

no reference to it.)

1.1. Semiadequacy and Kauffman bracket

It is useful to define here the Jones polynomial via Kauffman’s state model. We thus consider

the bracket [Ka] (rather than Tutte, as Dasbach-Lin) polynomial.

Below are depicted the A- and B-corners of a crossing, and its both splittings. The corner A

(resp. B) is the one passed by the overcrossing strand when rotated counterclockwise (resp.

clockwise) towards the undercrossing strand. A type A (resp. B) splitting is obtained by con-

necting the A (resp. B) corners of the crossing.

AA

B

B

AA

B

B

(4)

Recall, that the Kauffman bracket 〈D〉 of a link diagram D is a Laurent polynomial in a variable

A, obtained by summing over all states S the terms

A#A(S)−#B(S)
(

−A2 −A−2
)|S|−1

, (5)

where a state is a choice of splicings (or splittings) of type A or B for any single crossing (see

(4)), #A(S) and #B(S) denote the number of type A (respectively, type B) splittings and |S| the

number of (disjoint) circles obtained after all splittings in S. We call the A-state the state in

which all crossings are A-spliced, and the B-state is defined analogously.

The Jones polynomial of a link L can be specified from the Kauffman bracket of some diagram

D of L by

VL(t) =
(

−t−3/4
)−w(D)

〈D〉
∣

∣

∣

A=t−1/4

, (6)
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with w(D) being the writhe of D.

Let X ∈ Z[t, t−1]. The minimal or maximal degree mindegV or maxdegV is the minimal resp.

maximal exponent of t with non-zero coefficient in V . Let spant V = maxdegt V −mindegt V .

The coefficient in degree d of t in V is denoted [V ]td or [V ]d . We will use more commonly

another notation for coefficients.

Definition 1 Let V ∈ Z[t±1] or V ∈ t±1/2 ·Z[t±1], and n ≥ 0 an integer. Let m = mindegV and

M = maxdegV (then 2m ∈ Z). We write Vn(L) := [V ]m+n and V̄n(L) := [V ]M−n for the n+ 1-st

or n+ 1-last coefficient of V .

2. The second coefficient

For the Jones polynomial of special types of knots, more is known.

The twist number t(L) of a link is the minimal twist number t(D) of all diagrams D, where t(D)

is the number of pieces in D like

It occurred in recent work of Lackenby-Agol-Thurston [La].

In [DL] Dasbach-Lin gave a description of the twist numbers of alternating diagrams by means

of the second coefficient of their Jones polynomial. They considered Ti(K) := |Vi|+ |V̄i| and

proved

Lemma 1 ([DL]) For an alternating knot diagram D, we have t(D) = T1(D).

They were motivated by

Question 2 What are the relations between volume and V?

Some recent excitement was caused by the Volume conjecture [MM]), which states that some

complicated colored Jones polynomial values converge to the Gromov norm of the knot com-

plement (= hyperbolic volume of all hyperbolic parts in the JSJ decomposition = hyperbolic

volume for hyperbolic knots).

This conjecture seems, unfortunately, little helpful to determine the volume in practice. So we

may ask: if we sacrifice ‘=’ for a ‘≤’, are there more tangible and practical ways to relate

volume to V?

Using Lemma 1 and the recent work of Lackenby-Agol-Thurston [La], Dasbach-Lin obtained

certain relations between coefficients of the Jones polynomial and hyperbolic volume.

Corollary 1 ([DL]) For any alternating knot K, we have

C(T1(K)− 1)≤ vol(K)≤C′T1(K) (7)

for some positive constants C,C′.
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In fact, we have a qualitative improvement of the Dasbach-Lin result, stating that

Theorem 1 Every coefficient Vi of the Jones polynomial gives rise to a(n increasing) lower

bound for the volume of alternating knots.

The previous occurrence of the second coefficient of the Jones polynomial in a different situa-

tion in [St] motivated the quest for understanding V1, V̄1 in a broader context.

We return to the Kauffman bracket polynomial.

The concept of an adequate link was introduced by Lickorish and Thistlethwaite in [LT] to help

determining the crossing number of certain links. Adequacy consists of the combination of two

weaker properties called jointly semiadequacy. They are defined as follows.

We use the splicings from (4). One says a diagram D is A-adequate if the number of loops

obtained after A-splicing all crossings of D is more than the number of loops obtained after

A-splicing all crossings except one. Similarly one defines the property B-adequate. Then we

set

adequate = A-adequate and B-adequate ,

semiadequate = A-adequate or B-adequate ,

We call a link adequate resp. (A/B/semi)-adequate if it has an adequate resp. (A/B/semi)-adequate

diagram.

Note that semiadequate links are a much wider extension of the class of alternating links than

adequate links. For example, only 3 non-alternating knots in Rolfsen’s tables [Ro2, appendix]

are adequate, while all 55 are semiadequate.

An alternative way to understand A-adequacy is to keep the trace of the crossings after each

splitting. Then we have each of the traces of the crossings joining two loops, obtained after the

splittings. The property A-adequate means that, in the set of loops obtained by A-splitting all

crossings, each crossing connects two different loops. We call this set of loops the A-state of

the diagram.

A basic observation in [LT] is that when L is A- resp. B-adequate then |V0(L)|= 1 resp. |V̄0(L)|=

1. Thus if L is adequate, and in particular alternating, both properties hold.

In the following, we shall explain the second coefficient of the Jones polynomial in semiad-

equate diagrams. Bae and Morton [BMo] and Manchon [Mn] have done work in a different

direction, and studied the extreme coefficients of the bracket (which are ±1 in semiadequate

diagrams) in more general situations.

Let v(G) and e(G) be the number of vertices and edges of a graph G. Let G be G with multiple

edges removed (so that a simple edge remains).

−→ .

We call G the reduction of G. Let A(D) be the A-graph of D, a graph with vertices given

by loops in the A-state of D, and edges given by crossings of D. (The trace of each crossing

connects two loops.)

So a link diagram D is A-adequate, if A(D) has no edges connecting the same vertex. (Anything

with B is analogous.)
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Theorem 2 ([LT]) If D is A-adequate then V0 = ±1. If D is B-adequate then V̄0 = ±1. If D is

adequate then V (D) 6= 1.

Now we have

Theorem 3 If D is A-adequate then |V1|= b1(A(D)) is the first Betti number (number of cells)

of the reduced A-graph. Similarly if D is B-adequate then |V̄1|= b1(B(D)).

Key observation: If b1(A(D)) = 0, then D admits a positive orientation, i.e., can be oriented so

that all crossings become as L+ in (2).

Corollary 2 No (non-trivial) semiadequate knot has V = 1.

Proof. If V = 1 then V1 = 0, so the knot must be positive, but no non-trivial positive knot has

V = 1. ✷

Actually: There is no non-trivial semiadequate link with trivial Jones polynomial (i.e., polyno-

mial of the same component number unlink), even up to units ±tk.

3. Some (more) applications

3.1. Whitehead doubles

Untwisted Whitehead doubles have trivial Alexander polynomial, and are one suggestive class

of knots to look for trivial Jones polynomial. (Practical calculations have shown that the coef-

ficients of the Jones polynomial of Whitehead doubles are absolutely very small compared to

their crossing number.)

Proposition 1 Let K be a semiadequate non-trivial knot. Then the untwisted Whitehead dou-

bles Wh±(K) of K (with either clasp) have non-trivial Jones polynomial.

(Because V determines the degree-2-Vassiliev invariant v2, among Whitehead doubles only

untwisted ones may have trivial Jones polynomial.)

This generalizes a result for adequate knots in [LT] and positive knots in [St2] and considerably

simplifies the quest for trivial polynomial knots among Whitehead doubles. One can combine

this condition with the previous ones, the vanishing of the Vassiliev invariants of degree 2 and

3 on K (see [St2, St5]), to extend the verification of [St5] and establish that no non-trivial knot

of ≤ 16 crossings has untwisted Whitehead doubles with trivial Jones polynomial.

3.2. Minimal positive diagrams

We exhibited two types of infinite families of positive knots with no minimal (crossing number)

positive diagram. The first example of such a knot was given in [St6]. We obtained two type of

generalizations of this example.

Proposition 2 ([St4]) There are infinitely many positive knots that have no minimal positive

diagram, which are (a) of genus 3 and (b) fibered.
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(a) (b)

3.3. k-almost positive knots

Using help from Bae and Morton [BMo] (and more techniques, too long to discuss here), we

got this. The proof is long and given in my book [St7].

Proposition 3 A k-almost positive knot has non-trivial Jones polynomial for k ≤ 3 and non-

trivial skein polynomial for k ≤ 4.

3.4. 3-braids

We call a braid word semiadequate (A-, B-adequate, adequate = etc.) if the closure diagram is

semiadequate (etc.). A braid is semiadequate (etc.) if it has a semiadequate (etc.) word.

Thistlethwaite’s work [Th] implies that if β is a semiadequate (etc.) braid then its semiadequate

(etc.) words are of minimal (Artin generator) length in the conjugacy class of β (i.e. also for

all braids conjugate to β). The interesting feature of 3-braids is that the converse holds for

semiadequacy:

Theorem 4 A minimal length word in any 3-braid conjugacy class is semiadequate.

(One can also explicitly describe such words algebraicly.)

Corollary 3 3-braid links are semiadequate, and so have non-trivial Jones polynomial up to

units.

This result is originally due to Takahashi [Ta] (little known, and often imprecisely mentioned,

e.g., in [B]). It was known that the Burau representation determines the Jones polynomial

for 3 and 4-braids [J]. There is a direct connection between the faithfulness of the Burau

representation and the lack of knots with trivial polynomial. In fact, one can use the above

corollary to give another proof of the faithfulness for n = 3. Bigelow [Bi] is hoping(?) that

4-strand Burau many not be faithful, and is challenging the computers with this idea to find a

V = 1 knot among closed 4-braids. The closed 4-braid (σ2σ1σ3σ2)
2σ3

1σ−3
3 (which is among

the links given in [EKT]), however, has trivial polynomial up to units. So it cautions about

attempts to understand the (possible) non-existence of trivial polynomial knots among 3- or 4-

braids in terms of the (possible) faithfulness of the Burau representation. Our proof for 3-braids

has indeed little to do with Burau. By the above example, our result also fails for 4-braids.

Combining braid semiadequacy with work in [St3, BM, Xu], we can actually classify all 3-braid

links with given Jones polynomial. In particular, we know that
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Corollary 4 There are only finitely many closed 3-braids with the same Jones polynomial.

This was known to be true for the skein polynomial [St3]. The links of Traczyk [Tr] show that

this is not true for Jones polynomials up to units, and by connected sum for fixed polynomials

on 5-braids. (The status of 4-braids here remains unclear.) Also Kanenobu [K2] constructed

finite families of 3-braids of any arbitrary size, so that our result is the maximal possible.

The corollary implies the existence of some upper bound on the volume in terms of the Jones

polynomial. We can make an estimate more concrete:

Corollary 5 If K is a 3-braid link, which is not a closed positive or negative 3-braid, then

vol(K)≤C′ · T1 (similar to Dasbach-Lin’s (7)).

Futer-Kalfagianni-Purcell [FKP] have more recently proved a lower bound (much harder!).

3.5. Montesinos links

Corollary 6 Montesinos links are semiadequate. So no Montesinos link has trivial Jones poly-

nomial up to units.

Also the following is true:

Proposition 4 There exists an upper bound on the volume of a Montesinos link in terms of the

Jones polynomial.

For an explicit bound, however, I must involve T2, and prove a formula similar to theorem 3 for

V2. It depends on more than A(D).

4. The third coefficient

When L is an A-adequate link, then Vn(L) for n ≤ 2 were studied in [DL, DL2, St4]. We

recall the formulas briefly. Let D be an A-adequate diagram of L. (We will assume that D is

connected.)

Let |A(D)| be the number of loops in the A-state A(D), and the quantities e, e++, δ, and △ be

the number of pairs or triples of loops in A(D) for which there exist crossing traces (obtained

as in figure 4) making them look (up to moves in S2) like in:

e e++ δ △

(We do not require that these be the only traces connecting the loops, only that such traces

should exist.) Note that when D is alternating, then δ = 0.

Then, theorem 3 states that

|V1(L)|= e−|A(D)|+ 1 . (8)
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Define the intertwining graph IA(D) of the A-state of D as follows. Vertices of IA(D) are

multiple edges in the A-state of D (counted by e++) and edges in IA(D) go between (vertices

for) intertwined multiple edges in the A-state of D (counted by δ). Thus

χ(IA(D)) = e++− δ .

Note that IA(D) is not determined by A(D), but that △=△(A(D)) is, for it counts the cycles

of length 3.

We can state now the formula for V2(L).

Theorem 5 ([DL2, St4])

|V2(L)| =
(|V1(L)|+ 1

2

)

+ e++− δ−△ =
(|V1(L)|+ 1

2

)

+χ(IA(D))−△ . (9)

It is immediately clear, that χ(IA(D))−△ must be an invariant of the A-adequate diagram D,

but using a cabling argument, we can even separate them.

Corollary 7 The numbers χ(IA(D)) and △(A(D)) are invariants of the A-adequate diagram D

of the same link L.

We have thus now extracted three semiadequacy invariants: χ(A(D)) (or, equivalently, b1(A(D))),

χ(IA(D)) and △(A(D)). We know that for all A-adequate diagrams D of the same link L, each

invariant is the same.

5. Further applications

We talked about Proposition 4 as one application.

Another one is the extension of the oriented amphicheiral 3-braid link classification of Birman-

Menasco [BM].

Theorem 6 Let L be a 3-braid link which is unorientedly amphicheiral. Then either

(a) it is orientedly amphicheiral, in which case it is the closure of an alternating 3-braid with

Schreier vector admitting a dihedral (anti)symmetry, or

(b) it is one of the following links:

• a Hopf link,

• a Hopf link with a split trivial component,

• the connected sum of two Hopf links of the same sign,

• the (3,3)-rational link (or (1,1,1,3)-pretzel link), or

• the link 92
61 (the closure of (σ1σ2

2σ1)
2σ−1

2 ; see Figure 1.66.1 in [Ki, p. 46]).

The main highlight of this whole story, though, is the construction of odd crossing number

amphicheiral knots. This is a problem which goes back to Tait’s tabulating work in the 1880’s,

and is essentially as old as knot theory itself!
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Theorem 7 For each odd natural number n ≥ 15, there exists an amphicheiral knot of crossing

number n.

Similarly to Perko’s knot, the first odd crossing number amphicheiral knot was found acciden-

tally: Hoste and Thistlethwaite, in the course of routine knot tabulation, discovered an am-

phicheiral 15 crossing knot. (Their compilational work had previously shown that there are no

amphicheiral knots of odd crossing numbers up to 13.) Settling the other crossing numbers is

a major problem, though, since exhaustive enumeration is no longer a feasible approach – we

face the well-known difficulty that we do not know (generally) how to determine the crossing

number. A few other methods are known, but all they fail on such examples. Thus the way to

our result is rather far, and below we will conclude by giving a brief outline of the proof.

Our three semiadequacy invariants become, also joined by a relative obtained from the Kauff-

man polynomial and Thistlethwaite’s results [Th], the main tool for the proof of theorem 7. For

given odd n ≥ 15, we start with an amphicheiral knot K that has an n crossing diagram, which

is semiadequate. Luckily, such examples can be obtained by leaning on Hoste-Thistlethwaite’s

knot. The work in [Th] shows then that the crossing number of K is at least n− 1, and were it

n− 1, a minimal crossing diagram D would be adequate. Then we have 4 invariants for both

A-adequacy and B-adequacy each available. A detailed study of how an n−1 crossing diagram

with such invariants must look like is necessary to exclude most cases for D. Hereby, among

the various generalizations of Thistlethwaite’s knot, one must choose carefully the one whose

invariants make the exclusion argument most convenient (or better to say, feasible at all). Only a

small fraction of possibilities for D remain, which are easy to check, and rule out, by computer.

This allows us to conclude that in fact D cannot exist.

6. Open problems

Apart from the fundamental problem in Question 1, one can ask few other things.

Problem 1 Are there only finitely many semiadequate knots with the same Jones polynomial?

We saw this resolved for 3-braid knots (Corollary 4). But it remains unsettled more generally,

even just asking about Montesinos knots. Kanenobu [K] constructed infinite families of knots

with the same Jones polynomial, but they are not semiadequate. He also asked the following

question, which seems useful to reiterate here.

Problem 2 (Kanenobu) Are there only finitely many knots with the same Kauffman polyno-

mial?

One more topic to think about may naturally be this.

Problem 3 Understand coefficient 4, i.e., V3(D) for an A-adequate diagram D.

This looks hard, but perhaps not hopeless. At least in the case of positive braids, it was possible

to see some information in V3 in [St].
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